Towards versatile legged robots through active

نویسندگان

  • Claudio Semini
  • Victor Barasuol
  • Thiago Boaventura
  • Marco Frigerio
  • Michele Focchi
  • Darwin G. Caldwell
  • Jonas Buchli
چکیده

Robots with legs and arms have the potential to support humans in dangerous, dull or dirty tasks. A major motivation behind research on such robots is their potential versatility. However, these robots come at a high price in mechanical and control complexity. Hence, until they can demonstrate a clear advantage over their simpler counterparts, robots with arms and legs will not fulfill their true potential. In this paper, we discuss the opportunities for versatile robots that arise by actively controlling the mechanical impedance of joints and particularly legs. In contrast to passive elements like springs, active impedance is achieved by torque-controlled joints allowing real-time adjustment of stiffness and damping. Adjustable stiffness and damping in realtime is a fundamental building block towards versatility. Experiments with our 80 kg hydraulic quadruped robot HyQ demonstrate that active impedance alone (i.e. no springs in the structure) can successfully emulate passively compliant elements during highly-dynamic locomotion tasks (running, jumping and hopping); and, that no springs are needed to protect the actuation system. Here we present results of a flying trot, also referred to as running trot. To the authors’ best knowledge this is the first time a flying trot has been successfully implemented on a robot without passive elements such as springs. A critical discussion on the pros and cons of active impedance concludes the paper. This article is an extension of our previous work (Semini et al. (2013)) presented at the International Symposium on Robotics Research (ISRR) 2013.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

HyQ - A Dynamic Locomotion Research Platform

Articulated robots such as legged robots hold the promise to lead to versatile, multi purpose machines that eventually become useful in many application scenarios such as construction sites, disaster recovery, service robotics and remote inspection. For these tasks a great deal of kinematic flexibility and dexterity is required. As the inspiring examples in biology show, arms and legs are usefu...

متن کامل

Kinematic Calibration and Sensor Fusion for Legged Robots

While the current progress in actuation schemes, sensor setups, and mechanical design allows the development of increasingly performing legged robots, motion planing and control of such systems still pose challenging problems. Our group contributes to the ongoing research by focusing on the calibration, state estimation, and perception of legged platforms. Especially in rough and unstructured t...

متن کامل

Toward efficient, fast, and versatile running robots based on free vibration

Despite the impressive demonstrations of energy efficient legged robots in the past, there are still a number of challenges remained to compete with legged locomotion of biological systems. In order to optimize energy efficiency of a legged robot, we typically need to sacrifice versatility: our robots have usually limited locomotion speed, lack of behavioral diversity, complex mechanical design...

متن کامل

Stiffness control of a legged robot equipped with a serial manipulator in stance phase

The ability to perform different tasks by a serial manipulator mounted on legged robots, increases the capabilities of the robot. The position/force control problem of such a robot in the stance phase with point contacts on the ground is investigated here. A target plane with known stiffness is specified in the workspace. Active joints of the legs and serial manipulator are used to exert the de...

متن کامل

Design and Simulation of Legged Walking Robots in MATLAB Environment

It is well known that legged locomotion is more efficient,speedy, and versatile than the one by track and wheeled vehicles when it operates in a rough terrain or in unconstructed environment. The potential advantages of legged locomotion can be indicated such as better mobility, obstacles overcoming ability, active suspension, energy efficiency, and achievable speed (Song & Waldron, 1989). Legg...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015